
Abstract—One of the main obstacles to the adoption of 
Ethernet technology in carrier-grade metropolitan and wide-area 
networks is the large recovery latency, in case of fault, due to 
spanning tree reconfiguration. In this paper we present a 
technique called Bounded Latency Spanning Tree 
Reconfiguration (BLSTR), which guarantees worst case recovery 
latency by accelerating bridge reconfiguration and by 
eliminating the bandwidth-consuming station discovery phase 
that follows the bridge forwarding table invalidation due to 
reconfiguration. BLSTR does not replace the spanning tree 
reconfiguration protocol (RSTP/MSTP), which remains in 
control of network reconfiguration, whereas it operates in 
parallel with it. More specifically BLSTR maintains a copy of the 
bridge configurations and of the bridge forwarding tables 
deriving from all the possible single faults, so that at the 
occurrence of a fault BLSTR is able to activate the appropriate 
configurations and to load the appropriate forwarding tables.  
 

Index Terms—Ethernet, Carrier Ethernet, Wide Area 
Network, Metropolitan Area Network, Spanning Tree, RSTP, 
Bounded latency   
 

I. INTRODUCTION 
While in the past Ethernet technology was prevalently adopted 
in the local domain and in enterprise networks, recently the 
bandwidth growth deriving from the diffusion of optical 
transmission has made it convenient to adopt Ethernet 
technology also in the metropolitan/wide-area domain in and 
carrier networks. The adoption of Ethernet technology in 
carrier networks is mainly based on the IEEE 802.1Q standard  
[3], which  introduces the VLAN concept to segregate the 
traffic related to different services in the user network, on the 
IEEE 802.1ad standard (Provider Bridge) [4], which 
introduces the stacked VLAN concept to segregate the traffic 
related to different customers in the service provider network, 
and on the IEEE 802.1ah standard (Provider Backbone 
Bridge) [5], which introduces a separate network associated to 
a private addressing space to interconnect different Provider 
Bridge networks. In Provider Bridge technology, which is of 
particular interest in this paper, the service provider bridges 
can be classified in two categories, namely that of Provider 
Edge Bridges (PEB), connected to customer equipment, and 

that of Provider Core Bridges (PCB), internal to the service 
provider network (see Fig. 3). 

In general terms the Ethernet working model can be 
summarized by three distinctive features, namely spanning 
tree, address learning, and flood on unknown. The spanning 
tree feature denotes the fact that the Ethernet frames are 
forwarded through an acyclic overlay topology, called active 
topology, which spans all the bridges, i.e., a spanning tree. 
Ethernet uses the Rapid Spanning Tree Protocol (RSTP) [1] to 
establish such an overlay topology and the Multiple Spanning 
Tree Protocol (MSTP) [2], an extension of RSTP, to establish 
more than one spanning tree instance on the same physical 
topology to improve robustness and link utilization. The 
address learning feature denotes the fact that the bridge 
forwarding tables are updated at the reception of each frame 
by associating the frame source MAC address to the frame 
arrival port, i.e., by learning the route to a station from the 
traffic generated by that station. The flood on unknown feature 
denotes the fact that when a bridge receives a frame directed 
to an unknown MAC address the bridge floods the frame on 
all its active ports. Both address learning and flood on 
unknown require the presence of a spanning tree. In particular 
address learning requires the existence of single bidirectional 
paths between bridge pairs whereas flood on unknown is not 
compatible with the presence of cycles which would cause 
endless forwarding loops. 

Being a distance-vector protocol [1], RSTP can not provide 
bounded reconfiguration time in case of faults and more in 
general in case of network modifications that worsen the 
network paths because of the well known count-to-infinity 
phenomenon [13]. In particular it was shown that the RSTP 
convergence may end up lasting several seconds or even tens 
of seconds [15]. While such a large reconfiguration latency 
can be acceptable in enterprise networks, on the contrary it is 
not compatible with carrier grade services, for which the worst 
acceptable reconfiguration latency is of an order of magnitude 
of the tens of milliseconds [7].  

Several approaches to reduce Ethernet reconfiguration 
latency were proposed in the past. A first approach is to 
devise special techniques for specific physical topologies of 
large diffusion, such as ring [40][41]. A second approach is to 
exploit different MSTP instances to perform rapid rerouting of 
traffic after a fault [31][34]. A third approach is to abandon 
the Ethernet working model and to replace the spanning tree 
approach with a link state protocol [6][43]. A detailed 
discussion is provided in Section VI. 
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The Bounded Latency Spanning Tree Reconfiguration 
(BLSTR) technique [8] proposed in this paper guarantees 
bounded latency of spanning tree reconfiguration after a 
bridge fault or after a link fault. BLSTR does not replace the 
spanning tree reconfiguration protocol (RSTP/MSTP), which 
remains in control of network reconfiguration, whereas it 
operates in parallel with it. More specifically BLSTR 
maintains a copy of the bridge configurations and of the 
bridge forwarding tables deriving from all the possible single 
resource faults, quickly propagates fault notifications at their 
occurrence, deactivates bridge forwarding for a limited 
amount of time that linearly depends on bridge time 
synchronization accuracy, activates the appropriate 
configurations and forwarding tables and activates forwarding 
again.  As a consequence BLSTR not only provides fast 
reconfiguration but it also eliminates the effect of the 
bandwidth-consuming flooding needed to fill out the 
forwarding tables after reconfiguration.  

BLSTR follows the direction proposed in [36][37] for the 
routing domain, according to which routing decisions are 
taken in a centralized way and then distributed to the network 
nodes. In the same way as [38] proposes to relay fault 
information on dedicated packets to spread fault information 
on a link-state network, BLSTR is based on distributed active 
fault notification and centralized alternative configuration 
computation. However, the spanning-tree distinctive features 
(tree overlay topology, distance-vector approach, root bridge 
concept, address learning, absence of time-to-live field in 
frame header) require a dedicated approach.      

BLSTR exhibits the following characteristics: 

• It is fully compatible with RSTP/MSTP, and as such it 
can be included in current generation Ethernet bridges as 
an additional software component.  

• Its time critical operation is fully distributed, i.e., each 
bridge reconfigures itself in case of network faults, and as 
such it exhibits the same robustness as RSTP/MSTP. 

• It guarantees a bounded reconfiguration latency in the 
order of magnitude of tens of milliseconds on large 
geographical networks after a bridge fault or after a link 
fault. 

• It leverages the hardware cost reduction, as it requires at 
most an inexpensive upgrade of bridge memory.  

The BLSTR approach is specifically targeted at Provider 
Bridge networks based on the IEEE 802.1ad standard. Such 
networks, which are adopted by carriers to provide services in 
the metropolitan/wide-area domain, take substantial benefit 
from the bounded reconfiguration latency provided by 
BLSTR.  

The main contributions of the paper are summarized below: 
• The first contribution is the idea of precomputing the 

bridge port configurations and the forwarding tables that 
would derive from all possible single resource faults and 
of keeping such configurations and tables in the bridge 
memories (Section II). While it might be objected that the 
implementation of such a strategy would require a 
significant amount of memory, the objective of enabling 

the deployment of Ethernet technology in carrier-grade 
telecommunication services by supporting bounded 
reconfiguration latency is so relevant to justify a memory 
upgrade in bridges, in particular considering the low cost 
of memory.  

• The second contribution is the idea to have BLSTR work 
in parallel with RSTP (Section II). The coordination 
between BLSTR and RSTP is controlled in such a way 
that after a bridge fault or after a single link fault it is 
BLSTR that takes care of bridge reconfiguration, whereas 
in case of multiple simultaneous independent faults (the 
probability of which is very low), it is RSTP that takes 
care of bridge reconfiguration in the same way as it would 
do in absence of BLSTR. 

• The third contribution is a technique that supports the 
notification of single link faults and the identification of 
bridge faults within a bounded time (Section II). 

• The fourth contribution is a technique for synchronizing 
bridge reconfiguration after fault detection to guarantee 
the absence of temporary forwarding loops (Section II, 
Section III). The technique ensures that all the bridges to 
be reconfigured first switch off forwarding, then activate 
the new configurations, and finally switch on again 
forwarding at a time at which all the bridges to be 
reconfigured have already switched off forwarding, thus 
avoiding forwarding loops. 

• The fifth contribution is a set of algorithms aimed at 
calculating the spanning tree configuration generated by 
RSTP in a centralized way (Section IV). 

• The sixth contribution is a technique to compute the worst 
case latency of BLSTR spanning tree reconfiguration. 
(Section V). 

II. TECHNIQUE DESCRIPTION 

A. Architecture and Operating Principles 
BLSTR requires the cooperation between a central platform 

and a distributed platform. 
The BLSTR Central Platform (BLSTR-CP) is responsible 

for offline operations and does not intervene at the moment at 
which a fault is detected. On the contrary it maintains an up-
to-date image of the network, which includes the network 
topology, the topologies of the spanning tree instances 
(assuming that more than one spanning tree instance is in 
operation as provided by MSTP), the association of the end 
stations to the Provider Edge Bridge ports, and the alternative 
bridge configuration for every possible single resource fault. 
The alternative configurations correspond to those which 
would derive from RSTP. During normal operations, the 
alternative bridge configurations are kept up to date by the 
BLSTR-CP and forwarded to all bridges to be used to 
reconfigure the bridges in case of fault. 

The BLSTR Distributed Platform (BLSTR-DP) consists of 
components hosted in the bridges and takes care of immediate 
reaction to faults. In particular a bridge, upon fault detection 
on one of its ports, injects a Fault Notification message into 
the network. A link fault causes two notification messages 
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whereas a bridge fault causes one message from each bridge 
neighbour. Such messages reach all the other bridges in a 
worst-case time proportional to the network delay diameter 
(i.e., the maximum time needed by a fault notification 
message to travel between any pair of bridges in the network). 
Upon reception of such a message each bridge retrieves the 
configuration that it is supposed to assume in the network 
topology deriving from the detected fault and reconfigures 
itself immediately. Later on, RSTP converges to the same 
results. 

From a software point of view BLSTR is carried out by the 
joint action of a set of components (described in Section II.A) 
coordinated by means of a control strategy (described in 
Section II.B).  

B. Components 
BLSTR is carried out by the following seven components 

(see Fig. 1, that shows the components hosted by the BLSTR-
CP, and Fig. 2, that shows the components hosted by the 
BLSTR-DP): 

 

• Time Synchronization component (TS); 
• Network Image Management component (NIM); 
• Alternative Network Configuration Management 

component (ANCM); 
• Bridge Alternative Network Configuration Management 

component (B-ANCM); 
• Fault Notification Distribution component (FND); 
• Fault Identification component (FI). 
• BLSTR Control component (BC). 

 

 
Fig. 1.  BLSTR components hosted in the BLSTR-CP. 
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Fig. 2.  BLSTR components hosted in the BLSTR-DP. 

Time Synchronization component (TS) 

The Time Synchronization component, hosted in the 
BLSTR-DP, aims at keeping the bridge clocks aligned. It may 
be based on a global time source or on the Network Time 
Protocol (NTP) [42] as well as on other synchronization 
protocols and must support worst-case accuracy, i.e., the 
guarantee that the time-of-the-day of any bridge differs from 
the actual time-of-the-day by at most sT . 

Network Image Management component (NIM) 

The Network Image Management component, hosted in the 
BLSTR-CP, collects and maintains an image of the network, 
which includes the following information elements: 
• The Network Topology, for example in the form of an 

adjacency matrix called ]][[ BB NNNT , assuming that 

BN is the number of bridges in the provider network. 
• The Spanning Tree Instance Topologies, for example in 

the form of an array of SN  Port Status Arrays called  

]][][[ SPB NNNST , each corresponding to a Spanning 

Tree Instance, where SN  is the number of the active 

Spanning Tree Instances and PN  denotes the maximum 
number of ports in a bridge. 

• The association between the Network Endpoints, i.e., the 
MAC addresses external with respect to the network,  and 
the Provider Edge Bridges through which the Network 
Endpoints are reachable (See Fig. 3), for example in the 
form of an array of X elements called ][XNE , where X 
is the number of Network Endpoints (which is variable) 
and where each element includes the Network Endpoint 
MAC Address, the Provider Edge Bridge Id, the Provider 
Edge Customer Port, and the Provider VLAN Id. 

The maintenance of the Network Image is supported by 
appropriate data exchanges (periodic and/or event-driven) 
between the NIM and the bridges.  

 

PEB #2

PEB #1

PEB #3

PCB

PCB

00:01:01:01:01

Service Provider Network

Customer network

00:01:01:01:02

00:01:01:01:03

BLSTR-CP 1 2

PEB #1 1 VLAN #23

00:01:01:01:02 PEB #1 1 VLAN #21

00:01:01:01:03 PEB #1 1 VLAN #23

NE
MAC PEB id port VLAN id

00:01:01:01:01

Customer network

00:01:01:01:05

00:01:01:01:06

00:01:01:01:05 PEB #1 2 VLAN #41

00:01:01:01:06 PEB #1 2 VLAN #41
... ... ... ...  

 
Fig. 3.  Network Endpoint table (NE) for a sample Provider Bridges network 
(PEB: Provider Edge Bridge, PCB: Provider Core Bridge). 
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Alternative Network Configuration Management component 
(ANCM) 

The Alternative Network Configuration Management 
component, hosted in the BLSTR-CP, computes and maintains 
the alternative network configurations associated to all 
possible resource faults, where a resource is either a bridge or 
a link. For all the LB NN +  resources that may fail (where 

BN  is the number of bridges in the network and LN  is the 
number of links in the network), the ANCM component 
computes and maintains the following information elements: 
 

• ( LB NN + ) Alternative Network Topologies, for example 
in the form of an array of LB NN +  adjacency matrices 
called ]][][[ LBBB NNNNANT + . 

• ( LB NN + ) Alternative Spanning Tree Instance 
Topologies, for example in the form of an array of 
Spanning Tree Instance Topologies called 

]][][][[ LBSPB NNNNNAST + . 

• )( LBV NNN +⋅  Alternative Bridge VLAN Forwarding 
Tables, for example in the form of an array called 

]][][][[ LBVB NNXNNAFT +  of Forwarding Table 

entries (MAC, Port Number), where VN  indicates the 
number of existing VLANs and X indicates the 
Forwarding Table length.  

 

The algorithms used to compute the alternative network 
configurations are described in Sections IV.A and IV.B.  

Bridge Alternative Network Configuration Management 
component (B-ANCM)  

The Bridge Alternative Network Configuration 
Management component (B-ANCM), hosted in the BLSTR-
DP, keeps the bridge information base aligned with that of the 
ANCM. In particular the B-ANCM periodically downloads its 
portion of AST and AFT tables from the ANCM. 

More specifically the B-ANCM maintains the following 
information base in each bridge: 
 

• The ( LB NN + ) bridge Alternative Bridge Port 
Configurations, for example in the form of an array of 
port states called ]][][[ LBSP NNNNASTB +− . 

• The )( LBV NNN +⋅  bridge Alternative Bridge VLAN 
Forwarding Tables, for example in the form of an array 
called ]][][[ LBV NNXNAFTB +−  of Forwarding 

Table entries, where VN  indicates the number of existing 
VLANs and X indicates the Forwarding Table length. 

 

Fault Notification Distribution component (FND) 

The Fault Notification Distribution component, hosted in 
the BLSTR-DP, aims at supporting the immediate diffusion of 
Fault Notifications over the network. The diffusion must be 
completed within a time limit called Worst Case Fault 

Notification Latency (WCFNL), as we assume that after a 
fault the network continues to be connected. A technique to 
compute WCFNL is presented in Section V.  

FND relies on a fault notification repository array, which 
contains a copy of the fault notification messages received by 
the bridge during a reconfiguration period. 

The behaviour of FND is described in Sections II.C and III. 

Fault Identification component (FI) 

The Fault Identification component, hosted in the BLSTR-
DP, identifies the failing resource by combining the Fault 
Notification messages stored in the repository. More 
specifically, the fault of a link is detected by combining the 
notifications generated by the bridges located at the link 
endpoints, whereas the fault of a bridge is detected by 
combining the notifications generated by all the bridges 
connected to the failing bridge, as described in Section IV.C. 
In case of a single resource fault, the FI supports the selection 
of the appropriate alternative configuration in the B-ANCM. 
On the other hand, if the FI component in bridge receives a set 
of fault notification messages that are not compatible with a 
single resource fault (for example, originated by multiple 
faults), the bridge must revert to RSTP. 

BLSTR Control component (BC) 

The BLSTR Control component, hosted in the BLSTR-DP, 
coordinates BLSTR and RSTP/MSTP to activate the 
appropriate bridge configuration after a fault.  

First of all it must be pointed out that RSTP/MSTP is 
permanently running on the network, independent of the 
action of BLSTR. When it is BLSTR instead of RSTP/MSTP 
that controls the bridge configuration RSTP/MSTP keeps on 
running in background on a copy of the bridge configuration 
stored in the bridge memory.  

BC moves through a series of states as shown in  Fig. 4. 
During regular network operation BC is in a state called 
Normal Operation (NO), in which the bridge is ready to 
receive Fault Notification messages. Upon reception of a Fault 
Notification message, BC moves to a state called Fault 
Notification Collection (FNC), in which the bridge collects 
Fault Notification messages. At the expiration of a timer that 
guarantees that all the Fault Notification messages originating 
from the same fault have reached all the bridges BC processes 
the Fault Notification messages collected to recognize the 
fault and moves to a state called Single Fault (SF) during 
which forwarding is switched while the new bridge 
configuration is loaded but not yet activated. At the expiration 
of a timer that guarantees that all bridges have switched off 
forwarding BC activates the new configuration and moves to a 
state called Reconfigured (RC), in which the bridge 
configuration is maintained at least for a time equal to the 
longest time interval needed by RSTP to converge. 

The aforementioned state evolution changes upon reception 
of a Fault Notification message that signals the occurrence of 
a multiple fault, i.e., of a Fault Notification message that does 
not refer to the same fault to which the Fault Notification 
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messages already received refer. In such a case BC evolves to 
a state in which BLSTR is excluded whereas RSTP/MSTP is 
given the control of bridge reconfiguration. The multiple fault 
case is discussed in Section III. 

C. Control Strategy  
In the following we describe the BLSTR control strategy. 

Normal Operation (NO) 

During regular network operation the bridges are in the 
state NO, and NIM, ANCM and B-ANCM interact with each 
other to maintain the network information base up to date and 
aligned. It is worth noticing that such interactions are 
triggered by network topology changes, which are supposed to 
happen rarely. In particular NIM maintains the network 
image, ANCM maintains the alternative network images and 
calculates the alternative configurations, and B-ANCM 
maintains the bridge alternative configurations aligned with 
ANCM. In addition TS maintains the bridge clocks aligned 
within a threshold sT  from the current time. 

Fault Notification Collection (FNC) 

The BLSTR fault reaction is based on a rapid distribution 
of fault information over the network carried out by the FND 
component. 

Let iB  be a bridge in state NO (more precisely, the BC of 
which is in state NO) and let such a bridge detect a fault at 
time  ft  on port jP  (connected to remote bridge kB )1. At fault 

detection the bridge moves to state FNC, and FND performs 
the following actions:  
• it prepares a Fault Notification message that includes the 

current time-of-the-day timestamp ( *
ft ), the bridge Id 

( iB ), the port ID ( jP ) and the remote bridge ID ( kB ); 

• it enqueues such a message on high priority egress queues 
on all ports; as such queues are assigned maximum 
priority, the Fault Notification message experiences a 
predictable (and small) delay (see Section V for a 
quantitative analysis); 

• it stores the Fault Notification message in the Fault 
Notification repository. 

 

Let instead jB be a bridge in state NO or in state FNC that 

receives a Fault notification message. The bridge moves to 
state FNC (if necessary) and the message is processed by 
FND, which performs the following actions: 
• it sets (or updates) the *

OFFt  timer, at the expiration of 
which, the bridge moves to state SF; 

• it compares the incoming message with the ones 
contained in the Fault Notification repository, which 
includes all the Fault Notification messages received 
since the transition to state FNC; 

 
1 A port failure can be caused by a failure on the bridge, by a link failure 

(e.g. a fiber cut) or by a remote-bridge failure. 

• if the comparison gives a positive result then: 
o it discards the repeated Fault Notification 

message,  
  otherwise: 

o it stores the Fault Notification message in the 
Fault Notification repository; 

o it enqueues the Fault Notification message on 
high priority egress queues on all bridge ports 
but the port on which the message was received. 

 

 
 

 
Fig. 4.  BLSTR control strategy state transition diagram. 

 
Because of the limited time accuracy, the fault detection 

timestamp value *
ft  included in the Fault Notification message 

differs from the actual fault detection time ft . More 

specifically  

 sffsf TttTt +≤≤ ** -  (1) 

The Fault Notification message reaches all the bridges at 
actual time  rt : 

 WCFNLtt fr +=    (2) 

This is the time at which bridges can move to state SF to 
perform reconfiguration in a synchronized manner, as it can 
be assumed that all Fault Notification messages generated by 
the fault have reached all the bridges. Let iOFFt ,  be the actual 

time at which bridge i starts reconfiguration: the following 
inequality must hold for all bridges: 

 riOFF tt ≥,     i∀  (3) 

By combining (1) and (2), (3) we obtain: 
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 WCFNLTtt sfiOFF ++≥ *
,  (4) 

In other words, when entering state FNC, BC must configure a 
timer to expire at the appropriate time to start reconfiguration. 
In order to account for the receiving bridge imperfect timer 
alignment the bridge must set the timer to expire at local time: 

 WCFNLTtt sfOFF ++= 2**  (5) 

where *
ft is extracted from the message whereas WCFNL and 

sT are extracted from the bridge configuration, and waits for 
its expiration.  

While in state FNC, FND keeps on processing incoming 
Fault Notification messages and on updating the fault 
notification repository accordingly. Additionally, if necessary, 
that is if the *

ft  value included in the message is older than the 

oldest *
ft  value received so far, the BC reconfigures the timer 

to expire at  WCFNLTtt sf ++= 2oldest **
OFF .  

At local time *
OFFt , when the timer expires, the bridge 

moves to state SF in order to undertake the reconfiguration of 
both the Spanning Tree Instances and the VLANs influenced 
by the fault.  

Single Fault (SF) 

Because of the limited accuracy of timer synchronization 
the bridges enter state SF at different times. In order to avoid 
inconsistencies between the bridges still configured according 
to the network topology preceding the fault and the bridges 
configured according to the new network topology resulting 
from network reconfiguration, BLSTR is organized in such a 
way that for a period of time the network as a whole performs 
neither MAC Address learning nor frame forwarding.  

So, when entering state SF, BC undertakes the following 
actions: 
• It detaches the RSTP-driven reconfiguration process from 

actual bridge reconfiguration. In particular: 
 it redirects the port state updates issued by the RSTP 

over port state copies; 
 it suspends address Learning and Forwarding for the 

VLANs assigned to spanning trees subject to 
reconfiguration. 

• It loads the configuration corresponding to the detected 
fault by performing the following actions: 

 it sets a timer ( *
ONt ), at the expiration of which the 

new configuration is supposed to become active; 
 it replaces the obsolete Spanning Tree Instances 

with the new Spanning Tree Instances retrieved 
from the B-AST using the failing resource id as a 
key; 

 it replaces the Forwarding Tables of the VLANs 
which are influenced by the fault detected with the 
new Forwarding Tables extracted from the B-AFT 
using the failing resource id as a key. 

At the expiration of timer *
ONt  BC moves to state RC in 

order to activate the BLSTR configuration. 
We determine the value of *

ONt  as follows. We remind that 

all bridges know *
ft  and have calculated the same *

OFFt . 

Because of the limited accuracy of clock synchronization, the 
actual time value iONt ,  at which forwarding is resumed for 

bridge i can be written as: 

 )( **
,, OFFONiOFFiON tttt −+=  (6) 

To guarantee that the last bridge stops forwarding before 
the first bridge resumes forwarding, we impose that 

 j i, ∀  ,tt i,OFFj,ON ≥  (7) 

Applying (6) and considering that the maximum time 
difference between two bridges is  sT2 we obtain: 

 sOFFON Ttt 2** ≥−  (8) 

So, the value of *
ONt  timer has to be set to sOFF Tt 2* +  

Reconfigured (RC) 

Entering state RC the bridge resumes learning and 
forwarding for the VLANs assigned to the spanning trees 
subject to reconfiguration —  notice that the port 
configuration is the one (derived from BLSTR) that has been 
set in state SF; such a port configuration remains unaltered in 
state RC.  

After an appropriate time interval the bridges reset their 
state by reverting to state NO. Such an interval must be long 
enough to accommodate the worst-case RSTP convergence 
time and the time needed by BLSTR to recalculate and 
distribute the alternative configurations for the topology 
resulting from the fault. The reset process is initiated by the 
BLSTR-CP, which sends a reset command to all bridges in the 
network.  

III. MULTIPLE SIMULTANEOUS FAULTS 
The BLSTR control strategy described in Section II does 

not take into account the possibility of multiple simultaneous 
faults, i.e. the faults of multiple bridges or of multiple links 
that happen in a short time interval. In particular, we consider 
two successive faults as multiple simultaneous faults if the 
second fault happens before all the bridges in the network 
have reverted to Normal Operation after the first fault 
processing. 

As the bridge configuration remains blocked during state 
RC, in the case of multiple simultaneous faults BLSTR may 
end up worsening the RSTP reconfiguration performance. 
Such a worsening can be accepted as the probability of such 
an event is negligible. On the contrary, to handle multiple 
simultaneous faults appropriately the BLSTR control strategy 
needs to be improved as described below. The principle is to 
identify the occurrence of multiple simultaneous faults as soon 
as possible so as to have all bridges revert to RSTP. The 
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implementation of such a principle requires the development 
and the application of a technique that prevents from the 
occurrence of a situation in which a subset of bridges are 
controlled by RSTP (the ones that have identified the multiple 
fault) while another subset of bridges are controlled by 
BLSTR (the ones that have not identified multiple faults yet) 
as such a situation leads to inconsistencies and possibly to 
forwarding loops. The technique consists of having a bridge 
that detects a multiple fault deactivate forwarding and learning 
on its ports immediately. Forwarding and learning will be 
reactivated only at a time at which it can be guaranteed that all 
the bridges in the network have identified the multiple faults. 

The state transition diagram is enriched with the following 
states, as shown in Fig. 5: 
• Multiple Fault (MF): accessed immediately upon 

reception of a Fault Notification message that signals 
multiple faults. When entering state MF the bridge 
deactivates forwarding and learning. 

• Reverting to RSTP (RV): accessed at a time at which it 
can be guaranteed that all the bridges in the network have 
left the RC state. 

The bounded-latency behaviour of the fault distribution 
mechanism assures that, although the Fault Notifications 
messages may reach the bridges at different times and in 
different order, it is not possible that two or more bridges 
detect different single faults during the FNC phase. On the 
other hand, it is possible that a subset of bridges detect a 
single fault, while another subset detect a multiple fault, 
leading to an inconsistency between bridges. In any case, 
eventually a multiple fault notification reaches all the bridges 
in the network causing their transition to MF and the resulting 
deactivation of forwarding.  

At transition from state MF to state RV port state control is 
reverted to RSTP and forwarding and learning are enabled; 
such a transition must take place only after all bridges in the 
network have recognized the simultaneous multiple fault. This 
can be obtained by setting a timer *

RSTPt  configured as 
follows: 

 WCFNLTtt sf ++= 2 latest **
RSTP  (10) 

At the expiration of timer *
RSTPt  the bridge performs the 

transition to state RV. The timer is based on the latest (i.e., the 
most recent) timestamp among all the Fault Notification 
messages received because at time *

RSTPt  it is certain that at 
least the same set of messages that caused the multiple fault 
identification in the given bridge have reached all the other 
bridges in the network, assuring multiple fault identification 
and transition to MF state on all bridges. 

 

The process of reverting to normal operation from state RC 
(in the single fault case) or from state RV (in the multiple fault 
case) is initiated by the BLSTR-CP, that sends a reset 
command to all bridges. However, a Fault Notification 
message arriving during such a process might leave the 

network in an inconsistent state, as the fault can reach bridges 
that have already performed the transition (being in NO state) 
and bridges that have not yet performed the transition. 

So, suppose that the BLSTR-CP issues a reset command to 
instruct bridges to revert to NO at time *

NOt . In order to avoid 

inconsistencies we use the *
NOt value as a reference: if a bridge 

receives a fault notification message having a timestamp that 
is less than *

NOt , it cancels the reset command. If the cancel 
operation takes place in a bridge that already performed 
transition (being in state NO or FNC), the bridge immediately 
moves to MF state. The above comparison is performed 
between two timestamps, so its outcome is deterministic and 
independent of bridge clock accuracy. 

The multiple fault control strategy pseudocode is provided 
in Fig. 6. 

 
 

Normal Operation 
(NO)

Fault notification 
collection (FNC)

Local fault detection or
Incoming FND message

Single Fault (SF) Multiple Fault (MF)

t*OFF expiration && 
single fault identified

Reconfigured (RC)

t*RSTP
expiration

Reverting to RSTP 
(RV)

Incoming FND 
message

t*ON expiration

Multiple fault identified / 
FND message generated before t*NO

FND message generated before t*NO

Incoming FND 
message *

Incoming FND 
message *

Incoming FND 
message

Incoming FND 
message  

Fig. 5. BLSTR multiple resource fault control strategy (* A FND message 
arriving to bridges in SF or RC denote always a multiple fault). 
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Fig. 6. BLSTR multiple resource fault control strategy pseudocode. The 
enable_BLSTR_configuration()function detaches the RSTP from 
actual port configuration and configures ports according to the detected single 
fault. The disable_BLSTR_configuration()function gives back port 
control to RSTP. The propagate()function enques the fault notification 
message on all the bridges ports but the port on which the message has been 
received. 
 

IV. ALGORITHMS 
We present here the BLSTR algorithms. In order to 

simplify the presentation, we discuss only the single spanning 
tree/single VLAN case. The extension to the MSTP and 
multiple VLANs is trivial. 

A. Centralized spanning tree calculation and port role 
assignment 
RSTP is a distributed algorithm that calculates a 

deterministic spanning tree over an arbitrary topology of 
bridges. We discuss here an algorithm to calculate the same 
spanning tree active topology resulting from the distributed 
computation described in the 802.1D standard [1] in a 

centralized way. Such an algorithm is used by the ANCM 
component to compute centrally an Alternative Spanning Tree 
that would become active as a consequence of a resource 
fault, for all possible bridge or link faults. 

In RSTP the spanning tree overlay topology is implemented 
by means of per-port per-VLAN state variable called port 
role. RSTP port roles are the following: 
• Root: The root port is associated with the link toward the 

root bridge and belongs to the active topology.  
• Designated: The designated ports are associated with the 

links toward the leaves of the spanning tree and belong to 
the active topology.  

• Alternate: The alternate ports indicate alternative paths to 
the root bridge and do not belong to the active topology. 

• Backup: Backup ports are present only with shared-media 
LANs and do not belong to the active topology. 

The algorithm processes an alternative network topology 
(i.e., one element of ANT), which includes the 802.1D bridge 
parameters (bridge id, ports id, port path costs) and produces 
an alternative spanning tree instance expressed as a set of port 
roles (AST) for every bridge in the network. 

We consider a network composed only by point-to-point 
links, whereas we do not consider the case of shared media 
LANs which is obsolete. Under such a hypothesis, we model 
the network as a weighted graph, in which the nodes 
correspond to the bridges while the edges correspond to the 
links. The link weight is the spanning tree port path cost 
parameter, which by default is inversely proportional to the 
link data rate. The only exception is represented by ‘parallel’ 
links, i.e. multiple links between the same pair of bridges2. 

The algorithm, which calculates the same active topology as 
the one obtained by the RSTP protocol, is based on the 
Dijkstra algorithm, with some modifications needed to 
emulate the RSTP behaviour. The algorithm consists of the 
following steps: 
• Step 1. Root bridge selection: Every 802.1D-bridge has a 

unique bridge identifier (ID), which is composed by the 
bridge address and a user-manageable priority field. The 
root bridge is the bridge with the smallest ID on the 
network. As bridge addresses are unique, the root bridge 
selection is deterministic.  

• Step 2. Shortest-path identification: The shortest path 
from the root bridge to every other bridge is calculated. 
This is known as single-source shortest path problem, 
addressed by the well known Dijkstra algorithm.  The 
graph representing all such paths is a spanning tree. 
However, as there may exist multiple minimum-cost 
spanning trees based on the root bridge, the algorithm 
must select the bridge with the smallest ID as the next 
node to visit. 

• Step 3. Port roles assignment: The last step consists of 
assigning port roles. For each link that is part of the 
spanning tree, the port on the highest-ID bridge takes the 

 
2 In case of parallel links, i.e. multiple links between the same pair of bridges, 
only one of the link will be part of the active topology. In such a case, the tie-
breaker is represented by the comparison of port IDs. 

function 
fault_notification_received_or_fault_detected(msg
) { 
    if (msg is in the repository) 
        return; 
    store_in_repository(msg); 
    propagate(msg); 
    if (multiple fault identified || msg.ts < 
t*NO) { 
        state = MF; 
        t*OFF = t*ON = t*NO = 0; 
        disable_forwarding(); 
        disable_BLSTR_configuration(); 
        t*RSTP = newest_ts + WCFNL + 2 * Ts; 
    } else if (state == NO) { 
         oldest_ts = msg.ts; 
         t*OFF = oldest_ts + WCFNL + 2 * Ts; 
         state = FNC; 
    } else if (state == FNC) { 
         if (msg.ts < oldest_ts) { 
             oldest_ts = msg.ts; 
             t*OFF = oldest_ts + WCFNL + 2 * Ts; 
         } 
    } 
} 
 
function timer_expiration(timer) { 
    if (timer == t*OFF) { 
        state = SF; 
        disable_forwarding();  
        t*ON = t*OFF + 2 * Ts; 
        enable_BLSTR_configuration(); 
    } else if (timer == t*ON) { 
        state = RC; 
        enable_forwarding(); 
    } else if (timer == t*RSTP) { 
        state = RV; 
        enable_forwarding(); 
    } else if (timer = t*NO) { 
        state = NO; 
    } 
} 
 
function reset_command_received(cmd) { 
    t*NO = cmd.t*NO; 
} 
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designated role and the port on the lowest-ID bridge takes 
the root role. For other links, the port on the highest-ID 
bridge takes the designated role whereas the others take 
the alternate role. 

B. Bridge per-VLAN forwarding table calculation 
We discuss here an algorithm to pre-calculate the 

forwarding tables of each provider bridge. The pre-calculation 
of the forwarding tables for all destinations aims at avoiding 
the flooding deriving from forwarding table reset, thus greatly 
reducing the bandwidth consumed after spanning tree 
reconfiguration. 

We suppose that the MAC addresses of the end-stations 
attached to a customer edge port on a provider edge bridge are 
locally learned and collected by such a bridge, and such 
information is transmitted to the NIM and stored in Network 
Endpoints data structure (NE). Every NE entry includes the 
following fields:  
- External Endpoint MAC Address (MAC),  
- Provider Edge Bridge Id (peb_id),  
- Provider Edge Customer Port (peb_port),  
- Provider VLAN Id (VLAN_id).  
As said before, for simplicity we do not consider here the 
VLAN. 

The input of each run of the algorithm is a NE entry, and 
the output is a row of the forwarding table of each bridge in 
the network. So, for every NE entry, the algorithm performs 
the following steps: 
• Step 1. Provider edge bridge entry: The algorithm creates 

a forwarding table entry for the bridge identified by 
peb_id. The new entry will be the following: 

(MAC, peb_port) 
• Step 2. Tree-climb: The algorithm starts considering the 

bridge identified by peb_id, and climbs the tree up to 
the root bridge, creating a forwarding table entry for each 
traversed bridge. The tree is traversed entering by port 
d_port and going out by the root port. The new entry 
will be the following: 

(MAC, d_port) 
• Step 3. Other bridges: Finally, the algorithm sets a 

forwarding table entry for all non-traversed bridge. Such 
an entry will be the following: 

(MAC, root_port) 
 

It is certainly possible to improve the above algorithm, 
considering that any algorithm delivering the same results can 
be used. For example, it is possible to aggregate all MAC 
addresses pertaining to the same spanning tree and to the same 
port. However, the per-VLAN forwarding table calculation is 
performed offline thus it doesn’t influence the online critical 
path represented by the reconfiguration phase.  

C. Fault identification criteria 
During the Fault Recovery phase, every bridge receives a 

number of fault notification messages, as more than one 
bridge may detect the fault. Such messages are stored by the 
FND in the Active Fault Notification repository. We discuss 

now the fault identification criteria employed by the FI in 
order to activate the correct alternative configuration in case 
of single resource fault. There are two cases: the fault of a link 
and the fault of a bridge. 

The fault of a link is detected by the two link terminating 
bridges, which generate a fault notification message. In Fig. 7, 
for example, the link between bridge 222 and bridge 444 fails, 
causing the generation of exactly two fault notification 
messages, with Bi and Bk values reversed. 
 

 
 

Fig. 7.  Link fault. The link between bridge 222 and bridge 444 fails, causing 
the generation of two fault notification messages. 
 

The fault of a bridge is detected by all the neighbours of 
that bridge as multiple faults. So, the fault of a bridge causes 
the generation of at least one fault notification message. All 
the fault notification messages have the same values in the Bk 
field. In Fig. 8 bridge 222 fails. As a consequence, bridges 
111, 333 and 444 will issue a fault notification message for 
every link to bridge 222.  

 

 
Fig. 8.  Bridge fault. Bridge 222 fails, causing the generation four fault 
notification messages. 

V. PERFORMANCE ANALYSIS  
In this section we analyze the BLSTR performance.  
First we want to obtain the single-fault BLSTR worst-case 

fault recovery time ( MAXT ), i.e. the time interval from fault 
( ft ) to last bridge reconfiguration ( iONt . ) in the event of a 

single fault. MAXT can be written as: 
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The value sT depends on the clock synchronization 
accuracy, while the value of WCFNL can be determined as 
follows. 

We consider a network composed of BN  bridges linked by 

LN  links; the worst-case network diameter will be 1−BN . 
The crossing time for the i-th bridge can be written as: 

 i
Q

i
TX

i
R

i
P

i
CR ttttt +++=    (11) 

where: 
• i

Pt  is the propagation time on i-th link, which depends 
on the geographical length of such a link. 

• i
Rt  is the processing time on i-th bridge, which depends 

on hardware characteristics. 
• i

TXt  is the fault notification message transmission time. 
Being FNs  the size of such a message and ri the rate 

of the output link, we have: iFN
i
TX rst = . 

• i
Qt   is the fault notification message queuing time. Due to 

the higher priority of fault notification message, i
Qt  is 

the sum of the transmission time of a full-sized data 
frame ( iMTU rs ) plus the transmission time of other 
fault notification messages that could have been 
already enqueued in the output queue. We distinguish 
two cases: 
o Link fault. In case of link fault, two fault 

notification messages are generated by the two 
bridges that terminate the link. So in the worst 
case i

Qt  in the worst case can be written as:    

i
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i
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s
r
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o Bridge fault. In case of fault of a bridge having 

PN  ports, a fault notification message is 
generated from each neighbour bridge. So, in the 
worst case i

Qt  can be written as:    
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In case of link fault, WCFNL can be written as: 
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Analogously in case of bridge fault WCFNL can be written 
as: 
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In most realistic environments we can safely assume that 
the propagation and processing terms will dominate the 
expression. For example, with a MTU of 1500 B and a link 
capacity of 1 Gbps, we obtain a MTU/r value of 12 μs. 
Applying such an assumption, we can express MAXT  as: 

   ∑ ++≈+=
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)paths all(
max66       (14) 

i.e. the maximum recovery time in case of single fault is the 
sum of six times the clock synchronization accuracy plus the 
network delay diameter, including in the network delay 
diameter the notification message queueing time. To give an 
example, if we assume a synchronization of ST =1 ms, BLSTR 
can provide sub-50 ms recovery latency in a network with a 
delay diameter up to 44 ms. 

 

In the multiple fault case, the worst-case reconfiguration 
time corresponds to the RSTP worst-case reconfiguration 
time. However, the best-case reconfiguration time can be 
higher than the RSTP one, being influenced by the reverting 
to RSTP mechanism. In particular, bridges revert to RSTP at 
local time WCFNLTtt sf ++= 2 latest **

RSTP , see Eq. (10). 

So, taking into account the clock accuracy, we can say that all 
bridges in the network will revert to RSTP by the time: 

 WCFNLTtt sf ++= 4 last_faultRSTP  (15) 

i.e., in case of multiple faults, all bridges revert to RSTP at 
worst four times the clock synchronization accuracy plus the 
network delay diameter after the last fault.  

VI. COMPARISON WITH PREVIOUS WORK 
Surveys on the evolution of carrier-grade Ethernet 

technologies can be found in [9] and [10]. Another survey, 
focused on Ethernet resilience mechanisms is presented in 
[11]. 

In the following we summarize some previously proposed 
approaches to cope with Ethernet inefficiencies. 

A. Non-arbitrary topologies 
A number of approaches exist to handle RSTP slow re-

convergence that work in non-arbitrary topologies, such as 
ring topologies (EAPS [40], ERPS [41]) and parallel link 
aggregation [39], but they can not be used in arbitrary 
topologies. On the contrary, BLSTR approach can be applied 
to arbitrary topologies. 
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B. Replacing spanning tree with a link state routing 
protocol 
A growing number of proposals in the literature 

[14][17][18][19][20] and in standardization bodies  [6][43] 
suggest the elimination of spanning-tree based forwarding on 
Ethernet networks by applying a link state routing protocol to 
layer-2, i.e., by forwarding frames on shortest-path routes. 

In [14] the authors propose to use a link state protocol for 
forwarding and a distributed directory service providing 
station location registration in order to eliminate the need of 
flooding. Using such an approach, a new station connecting to 
the network has to register itself to the directory service. 

SEATTLE [20] proposes a distributed directory mechanism 
composed by two parts: i) by running a link state protocol, 
each bridge learns the shortest path to every other bridge in 
the network, ii) an hash function is used to map end-station 
information to a bridge. This approach promises to reduce the 
amount of distributed information, achieving better scalability. 

Recently two link state approaches have emerged: the 
RBridges/TRILL, sponsored by IETF, and the Shortest Path 
Bridging, sponsored by the IEEE. 

RBridges [16] is a campus-level architecture based on a 
link-state routing in which frames are encapsulated in an 
additional layer-2 header containing a TTL counter in order to 
avoid forwarding loop persistence; additionally, station 
address learning is only performed locally and the obtained 
information is distributed to the entire network along with 
topology information. RBridges is specifically targeted to 
campus-wide and datacenter networks. Such a proposal is 
under active standard development in IETF Transparent 
Interconnection of Lots of Links (TRILL) working group. 

Shortest Path Bridging (802.1aq) [6] is an amendment to 
the IEEE 802.1Q standard providing Ethernet frame 
forwarding on shortest path by using the IS-IS protocol. 

Approaches based on link state routing protocol require an 
extensive modification of the Ethernet working model, based 
on the elimination of the spanning tree approach in favour of 
shortest-path routing approach, often involving a modification 
of the Ethernet frame format based on the inclusion of 
additional headers. On the contrary, BLSTR maintains the 
spanning tree-based forwarding approach, and uses network 
global topology information only to precalculate spanning tree 
instances and forwarding tables.  

C. MSTP-based recovery schemes 
Several mechanisms have been proposed to exploit MSTP 

to perform a global recovery scheme [23][24][25][27] 
[30][31], i.e., to take advantage of the  use of two disjoint 
spanning tree paths (primary and backup) between each pair 
of border bridges. Such paths are usually pre-computed 
offline. When a resource (link or node) fails, the ingress node, 
informed of the fault, switches the traffic on the backup path. 
Such approaches usually rely on the assignment of a single 
VLAN to an instance of MSTP, and use the VLAN IDs to 
select the spanning tree instance. This prevents from using all 
the available VLAN IDs to classify and segregate customer 

traffic and poses scalability issues. 
 

On the other hand, in a local recovery scheme 
([26][28][29][31][32][33][34]), the fault of a resource triggers 
the rerouting of the traffic on a pre-signalled backup path and 
such a reroute is controlled by the upstream node with respect 
to the detected fault. Local recover mechanisms exist in 
SONET/SDH rings and have been proposed recently in MPLS 
[35]. Some local recovery approaches ([26][28][29][31]) take 
advantage of multiple spanning tree instances as backup paths 
while some others propose different mechanisms: in [32] the 
authors propose a local recovery mechanism that responds to 
link fault by locally rerouting the traffic on a path pre-
computed via integer linear programming that is not on the 
spanning tree; the same authors extended the concept to 
simultaneous double link faults in [33]. 

 

The MSTP-based approaches presented above use a 
multiple spanning tree approach, but they explicitly build 
spanning tree instances without being compatible with 
MSTP/RSTP protocols. Additionally, they use VLAN IDs to 
select switching paths, preventing the use of VLAN tagging to 
segregate traffic. On the contrary, BLSTR supports as many  
spanning tree instances as MSTP, as it does not rely on 
explicit path building, and does not exploit VLAN IDs. 

D. Other approaches 
In [15] the authors propose RSTP with Epochs, a RSTP 

modification that adds a sequence number to RSTP BPDUs in 
order to suppress stale topology information from the network 
thus avoiding the count-to-infinity behaviour. Such an 
approach aims at resolving a specific issue (count-to-infinity 
behaviour) and does not address bounded latency or flooding 
issues. 

VII. CONCLUSION 
The fact that RSTP is based on distance-vector leads to high 

worst-case reconfiguration latency in Ethernet networks 
because of the possibility of count-to-infinity. Such a high 
reconfiguration latency is an obstacle to the deployment of 
Ethernet technology in the carrier domain.  

A possible radical approach is to replace entirely the 
spanning tree scheme with a link-state algorithm, as advocated 
for example by the IEEE 802.1aq standard. 

Instead, in BLSTR we propose a hybrid approach: we 
maintain a local-information-based spanning tree approach, 
characterized by the robustness of a distributed system, but we 
extend it through the addition of a mechanism to pre-compute 
the bridge configurations that would result from all possible 
single resource faults so as to be able to activate them 
immediately upon fault detection. In this way, the 
performance of network reconfiguration upon fault detection 
depends on the speed of fault notification distribution and on 
the accuracy of bridge clock synchronization. In particular, in 
case of single resource fault the worst-case fault recovery 
latency is the sum of the network delay diameter plus six 
times the bridge clock synchronization accuracy, while in case 
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of multiple faults the worst-case recovery time is the same of 
RSTP protocol. 

Additionally, the pre-calculation of the bridge forwarding 
tables allows retaining the Ethernet plug-and-play distinctive 
characteristics, namely the address learning capability and the 
flood-on-unknown capability, while avoiding the bandwidth-
consuming flooding phase needed to re-populate the 
forwarding tables after their reset.  

In RSTP the impact of a fault on network operation 
depends on the location of the fault in the spanning tree: a 
fault close to the root bridge has a larger impact with respect 
to a fault close to the leaves, as only the bridges contained in a 
subtree rooted at the fault are subject to a root path cost 
change [12]. A possible improvement to BLSTR will consist 
of exploring the possibility of adapting dynamically the 
WCFNL value to the network portion that is impacted by the 
specific fault in order to improve the reconfiguration time in 
the average case. 
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